

Neusilberband

Chemische Zusammensetzung

Bezeichnung			Chemische Zusammensetzung in % (mm)									
Bezeichnung	Werkstoffnr.	EN	Cu min.	Cu max.	Fe max.	Mn max.	Ni min.	Ni max.	Pb max.	Sn max.	Zn min.	Weitere Gesamt max.
CuNi12Zn24	CW403J	EN 1654/ EN 1652	63,0	66,0	0,3	0,5	11,0	13,0	0,03	0,0	Übrige	0,2
CuNi18Zn20	CW409J	EN 1654/ EN 1652	60,0	63,0	0,3	0,5	17,0	19,0	0,03	0,03	Übrige	0,2
CuNi18Zn27	CW410J	EN 1654/ EN 1652	53,0	56,0	0,3	0,5	17,0	19,0	0,03	0,03	Übrige	0,2

Entsprechungen

	Bezeichnung				Allgemeine inte	rnationale Güten		
Bezeichnung	Werkstoffnr.	EN	U	SA	JAPAI	N (JIS)	CHINA	A (GB)
CuNi12Zn24	CW403J	EN 1654/ EN 1652	C75700					
CuNi18Zn20	CW409J	EN 1654/ EN 1652						
CuNi18Zn27	CW410J	EN 1654/ EN 1652						

^{*} Die auf dieser Webseite enthaltenen Daten dienen ausschließlich Informationszwecken und stellen in keinem Fall vertragliche Lieferbedingungen dar. Fehler und Unterlassungen ausgenommen.

Mechanische Eigenschaften

MECHANISCHE EIGENSCHAFTEN EN 1652 / EN 1654

	Bezeichnungen Metallurgischer Zustand		Zugfestigkeit Rm N/mm²		Streckgrenze bei 0,2 % Rp _{0,2}	Dehnung 1) A ₅₀ mm		Härte HV	
Mat			min.	max.	N/mm²	für Dicken bis 0,25 mm	Für Dicken über 0,25 mm	min.	max.
Bezeichnung	Werkstoffnr.					min.	min.		
		R360	360	430	(max. 230)	35	45	-	-
		H080	-	-	-	-	-	80	110
		R430	430	510	(min. 230)	8	15	-	-
		H110	-	-	-	-	-	110	150
CuNi12Zn24	CW403J	R490	490	580	(min. 400)	5	8	-	-
		H150	-	-	-	-	-	150	180
						-	-		
		R550	550	640	(min. 480)	-	3	-	-
		H170	-	-	-	-	-	170	200
						-	-		
		R620	620	710	(min. 580)	-	2	-	-
		H190	-	-	-	-	-	190	220
		R380	380	450	(max. 250)	27	37	-	-
		H085	-	-	-	-	-	85	115
		R450	450	520	(min. 250)	9	18	-	-
		H115	-	-	-	-	-	115	160
CuNi18Zn20	CW409J	R500	500	590	(min. 410)	3	5	-	-
		H160	-	-	-	-	-	160	190

^{*} Die auf dieser Webseite enthaltenen Daten dienen ausschließlich Informationszwecken und stellen in keinem Fall vertragliche Lieferbedingungen dar. Fehler und Unterlassungen ausgenommen.

Bezeichnungen		Zugfesti	Zugfestigkeit Rm		Dehn	ung 1)	Härte HV		
			N/mm²			A ₅₀ mm			
Mat	terial	Metallurgischer			N/mm²	für Dicken bis	Für Dicken über		
		Zustand	min.	max.		0,25 mm	0,25 mm	min.	max.
Bezeichnung	Werkstoffnr.					min.	min.		
		R580	580	670	(min. 510)	-	2	-	-
		H180	-	-	-	-	-	180	210
		R640	640	730	(min. 600)	-	-	-	-
		H200	-	-	-	-	-	200	230
		R390	390	470	(max. 280)	30	40	-	-
		H090	-	-	-	-	-	90	120
		R470	470	540	(min. 280)	11	20	-	-
		H120	-	-	-	-	-	120	170
CuNi18Zn27	CW410J	R540	540	630	(min. 450)	3	5	-	-
		H170	-	-	-	-	-	170	200
		R600	600	700	(min. 550)	-	2	-	-
		H190	-	-	-	-	-	190	220
		R700	700	800	(min. 660)	-	-	-	-
		H220	-	-	-	-	-	220	250

HINWEIS - Die in Klammern stehende Werte sind keine Anforderung nach Norm, sie werden nur zu Informationszwecken angegeben.

1) Die dargestellten Werte sind Richtwerte und basieren auf EN 1652 und EN 1654

^{*} Die auf dieser Webseite enthaltenen Daten dienen ausschließlich Informationszwecken und stellen in keinem Fall vertragliche Lieferbedingungen dar. Fehler und Unterlassungen ausgenommen.

Ausführungen

BLANKES MATERIAL

Die Bänder müssen sauber und frei von Fehlern sein. Dies muss bei der Angebotsanfrage und der Bestellung zwischen dem Kunden und dem Lieferanten vereinbart werden. Normalerweise verbleibt auf kaltgewalzten Erzeugnissen eine dünne Restschicht von Schmiermittel. Dies ist, wenn nicht anders angegeben, zulässig.

OBERFLÄCHENRAUHEIT EN 1654

Die Oberflächenrauheit ist bei Angebotsanfrage und der Bestellung zwischen dem Kunden und dem Lieferanten zu vereinbaren.

OBERFLÄCHENZUSTAND EN 13599

Die Produkte müssen sauber und frei von Fehlern sein. Dies muss bei der Angebotsanfrage und der Bestellung zwischen dem Kunden und dem Lieferanten vereinbart werden. Normalerweise verbleibt auf kaltgewalzten Erzeugnissen eine dünne Restschicht von Schmiermittel. Dies ist, wenn nicht anders angegeben, zulässig. Verfärbungen sind zulässig, wenn diese die Verwendung des Produkts nicht beeinträchtigen.

^{*} Die auf dieser Webseite enthaltenen Daten dienen ausschließlich Informationszwecken und stellen in keinem Fall vertragliche Lieferbedingungen dar. Fehler und Unterlassungen ausgenommen.

ZINNBESCHICHTUNGEN

Zinnbeschichtungen für Kupferbänder und Kupferlegierungen:

Beschichtungsart	Norm
Elektrolytisch	EN 14436
Feuerverzinnt	EN 13148

ELEKTROLYTISCH EN 14436

VERFAHRENSARTEN DER ELEKTROLYTISCHEN VERZINNUNG UND ARTEN DER ZINN- BZW. ZINNLEGIERUNGSBESCHICHTUNG EN 14436

Verfahren	Beschreibung
Verfahren für elektrolytische, matte Beschichtungen.	Dies ist die Standardausführung eines traditionellen elektrolytischen Bades.
Verfahren für elektrolytische, glänzende Beschichtungen.	Die glänzenden Beschichtungen werden durch die Verwendung von Bädern erreicht, die ein oder mehrere geeignete Glanzmittel enthalten. Die Glanzmittel können unerwünschte Einflüsse auf die darauffolgenden Schmelz- oder Weichlötvorgänge haben. Andererseits können sie vorteilhaft sein in Bezug auf die Reibeigenschaften (reibungsarme bzw. gleitende Kontakte).
Verfahren für elektrolytische, durch Rückfluss glänzend gemachte Beschichtungen.	Die durch Rückfluss glänzend gemachten Beschichtungen werden durch Erhitzung einer elektrolytischen, matten Beschichtung während einiger Sekunden oberhalb ihres Schmelzpunkts und anschließender Abkühlung erhalten. Die Beschichtungen behalten nach Abkühlung ihren Glanz bei. In der Praxis wird das Polieren durch Rückfluss auf dem Band weder bei Beschichtungsdicken von über 5 µm (Rutschgefahr) noch bei bereits glänzenden Beschichtungen verwendet.

^{*} Die auf dieser Webseite enthaltenen Daten dienen ausschließlich Informationszwecken und stellen in keinem Fall vertragliche Lieferbedingungen dar. Fehler und Unterlassungen ausgenommen.

HINWEIS - Elektrolytische Zinnbeschichtungen können eine plötzliche Bildung von metallischen Fäden aufweisen (z. B. durch die Kombination von Feuchtigkeit und mechanischen Spannungen). Diese Begleiterscheinung ist für elektrotechnische Anwendungen sehr unvorteilhaft (Gefahr von Kurzschlüssen). Die Gefahr des Auftretens dieser Begleiterscheinung kann durch das Polieren durch Rückfluss unter Verwendung von Zinn-Blei-Legierungen oder durch Einfügen einer geeigneten Unterschicht verringert werden.

ARTEN DER ELEKTROLYTISCHEN ZINN- UND ZINNLEGIERUNGSBESCHICHTUNG GEMÄSS ANWENDUNG EN 14436

Beschichtur	ngsdicke μm	Beschichtungsarten				
min.	min. max.		Sn matt (Snm)	Sn poliert durch Rückfluss (Snf)		
	1	As	N/A	As		
0,8	1,2	As	N/A	*		
1,5	2,5	В	As	B - R		
2	4	B - C	R	B - R		
3	6	B - C	R	N/A		
5		B - C	R - C	N/A		

HINWEIS 1: Anwendungsbereiche:

- N/A: nicht anwendbar
- B: verbessert die Eignung für Weichlöten
- *: verringert die Reibungskräfte
- C: Korrosionsbeständigkeit
- R: verringert den elektrischen Widerstand in einem Schalter
- As: verbessert das Erscheinungsbild

HINWEIS 2: Diese Standardwerte werden zu Informationszwecken angegeben und können nach Vereinbarung zwischen dem Kunden und dem Lieferanten geändert werden.

ZUSAMMENSETZUNG VON ZINN UND ZINNLEGIERUNGEN EN 14436

Bes	schichtungsart	Materialbezeichnung	Zusammensetzung in % (Massenfraktion)
-----	----------------	---------------------	---------------------------------------

^{*} Die auf dieser Webseite enthaltenen Daten dienen ausschließlich Informationszwecken und stellen in keinem Fall vertragliche Lieferbedingungen dar. Fehler und Unterlassungen ausgenommen.

Sn min.	Weitere, gesamt		
Sn glänzend (Snb)	Sn99	99	Rest
Sn matt (Snm) oder Sn poliert durch Rückfluss (Snf)	Sn99,50	99,5	Rest

FEUERVERZINNUNG EN 13148

BESCHAFFENHEIT EN 13148. FEUERVERZINNUNG

Schichtdicken (Mittelwerte) und bevorzugte Dickenbereiche für die Beschichtungen:

Dicke	Dicken			
μm	μ	Anwendung		
Mittelwert	von	bis		
1,45	0,7	2,2	Verhütung von Oberflächenoxidation, dekorativer Effekt, Verringerung der Reibkräfte.	
2	1	3	Verhütung von Oberflächenoxidation, dekorativer Effekt, Verringerung der Reibkräfte.	
3,5	2	5	Korrosionsschutz	
5	3	7	Längere Lebensdauer	
7,5	5	10	Hilfreich bei Weichlöten	
10	7	13	Hilfreich bei Weichlöten	

^{*} Die auf dieser Webseite enthaltenen Daten dienen ausschließlich Informationszwecken und stellen in keinem Fall vertragliche Lieferbedingungen dar. Fehler und Unterlassungen ausgenommen.

Das Erscheinungsbild hängt von der Art der Abkühlung des flüssigen Films, der Beschichtungsart und der verwendeten Technik zur Beseitigung des überschüssigen geschmolzenen Metalls ab. Die Oberfläche kann glänzend oder matt bzw. eine Kombination aus beiden sein. Das Aussehen der Beschichtung hat keinen Einfluss auf die Tauglichkeit der Beschichtung. , müssen diese an das Erscheinungsbild der Beschichtung gestellt werden, müssen diese bei der Angebotsanfrage und/oder Bestellung angegeben werden.

Toleranzen

DICKENTOLERANZEN EN 13599/EN 1652

Nenndicke		Dickentoleranzen für Nennbreiten nach EN 13599/EN 1652						
		10 < Y	≤ 200					
>	≤	normal (Klasse A)	Sonderausführung (Klasse B)	200 < Y ≤ 350	350 < Y ≤ 700	700 < Y ≤ 1000	1000 < Y ≤ 1250	
0,05 1)	0,1	± 10 % ²⁾	-	-	-	-	-	
0,1	0,2	± 0,010	± 0,007	± 0,015	-	-	-	
0,2	0,3	± 0,015	± 0,010	± 0,020	± 0,03	± 0,04	-	
0,3	0,4	± 0,018	± 0,012	± 0,022	± 0,04	± 0,05	± 0,07	
0,4	0,5	± 0,020	± 0,015	± 0,025	± 0,05	± 0,06	± 0,08	
0,5	0,8	± 0,025	± 0,018	± 0,030	± 0,06	± 0,07	± 0,09	
0,8	1,2	± 0,030	± 0,022	± 0,040	± 0,07	± 0,09	± 0,10	
1,2	1,8	± 0,035	± 0,028	± 0,06	± 0,08	± 0,10	± 0,11	
1,8	2,5	± 0,045	± 0,035	± 0,07	± 0,09	± 0,11	± 0,13	
2,5	3,2	± 0,055	± 0,040	± 0,08	± 0,10	± 0,13	± 0,17	
3,2	4,0	-	-	± 0,10	± 0,12	± 0,15	± 0,20	
4,0	5,0	-	-	± 0,12	± 0,14	± 0,17	± 0,23	
5,0	6,0	-	-	± 0,14	± 0,16	± 0,20	± 0,26	

Maßangaben in mm.

- 1) Einschließlich des Werts 0,05.
- 2) ± 10 % der Nenndicke

^{*} Die auf dieser Webseite enthaltenen Daten dienen ausschließlich Informationszwecken und stellen in keinem Fall vertragliche Lieferbedingungen dar. Fehler und Unterlassungen ausgenommen.

DICKENTOLERANZEN (FOR COATED MATERIALS)

EN 13148. Die Dicke der verzinnten Bänder muss die geeignete Kombination zwischen Bandbreite (vorherige Tabelle) und Dickenbereich der bestellten Beschichtungen für beide Seiten erfüllen.

EN 14436. Die Banddicke vor der Verzinnung muss den in der vorstehenden Tabelle angegebenen ungefähren Toleranzen entsprechen. Bei den Dickentoleranzen für verzinnte Bänder müssen die minimalen und maximalen Beschichtungsdicken berücksichtigt werden.

BREITENTOLERANZEN DER BÄNDER

^{*} Die auf dieser Webseite enthaltenen Daten dienen ausschließlich Informationszwecken und stellen in keinem Fall vertragliche Lieferbedingungen dar. Fehler und Unterlassungen ausgenommen.

Nennd	icke t	VINCOs Standardtoleranz in Breite ²⁾	Breitentoleranzen für Nennbreiten nac 13599/ EN 1654		www.vinco.es
<	≤	3-15 15-50 50- 150 >150	bis 50 100 200 350 500 500 500 500 700 500	0 700 5 bis 0:+0.2	
0,1	0,2	$0;+0,1 \atop 5^{3)} 0;+0,1 \atop 5^{3)} 0;+0,1 \atop 5^{3)} 0;+0,2 \atop 5^{3)}$	0;+0,2 0;+0,3 0;+0,4 0;+0,6 0;+1,0 0;+1	0;+2,0	
0,2	0,4	0;+0,1 0;+0,1 0;+0,1 0;+0,2 5 5	0;+0,2 0;+0,3 0;+0,4 0;+0,6 0;+1,0 0;+1	0;+2,0	
0,4	1	0;+0,1 0;+0,1 0;+0,2 0;+0,2 4	0;+0,2 0;+0,3 0;+0,4 0;+0,6 0;+1,0 0;+1	1,5 0;+2,0	
1	1,5	0;+0,2 0;+0,2 0;+0,2 0;+0,3	0;+0,3 0;+0,4 0;+0,5 0;+1,0 0;+1,2 0;+1	1,5 0;+2,0	
1,5	2	auf Angra 6;+0,2 ge 0;+0,3 0;+0,3	0;+0,3 0;+0,4 0;+0,5 0;+1,0 0;+1,2 0;+1	1,5 0;+2,0	
2	2,5	auf Angra ge $0;+0,2 \atop 6 0;+0,3 \atop 0;+0,3 \atop 2$	0;+0,5 0;+0,6 0;+0,7 0;+1,2 0;+1,5 0;+2	2,0 0;+2,5	
2,5	3	auf auf 0;+0,3 0;+0,3 qe ge 2 5	0;+1,0 0;+1,1 0;+1,2 0;+1,5 0;+2,0 0;+2	2,5 0;+3,0	
3	5	auf auf 0;+0,3 0;+0,3 Angra Angra 2 5	0;+2,0 0;+2,3 0;+2,5 0;+3,0 0;+4,0 0;+5	5,0 0;+6,0	

Maßangaben in mm.

- 1) Einschließlich den Wert t=0,05
- 2) Nach Vereinbarung sind engere Maßtoleranzen möglich.
- 3) Einschließlich den Wert t=0,1

LÄNGENTOLERANZEN 13599

^{*} Die auf dieser Webseite enthaltenen Daten dienen ausschließlich Informationszwecken und stellen in keinem Fall vertragliche Lieferbedingungen dar. Fehler und Unterlassungen ausgenommen.

Längentoleranzen für Grobblech, Feinblech und in Streifen bis zu 5000 mm geschnittene Bänder.

Länge	Nenndicke	Längentoleranzen	
Im Rohzustand Walzung (M)	bis 25	± 50	
Footo Längo (F)	ab 5	0; +10	
Feste Länge (F)	5 bis 10	0; +15	

Maßangaben in mm.

SÄBELTOLERANZ

	Toleranzen bei der Kantenwölbung nach Vereinbarung		Toleranzen nach Norm EN 13599 für die Kantenwölbung				
Nennbreite (W)	Maximale Abweichung 1000 mm Dicke (t)		Maximale Abweichung 1000 mm Dicke (t)				
	t ≤ 1,20 mm	t > 1,20 mm	t ≤ 0,5 mm	0,5 < t ≤ 1,20 mm	1,20 < t ≤ 2,50 mm	2,50 < t ≤ 3,20 mm	3,20 < t ≤ 5,00 mm
3 ≤ W < 6	2,50	4,00					
6 < W ≤ 10	2,00	3,00					
$10 < W \le 15$	1,00	1,50	7,00 ¹⁾	10,00			
15 < W ≤ 20	1,00	1,50	4,00	6,00	8,00		
20 < W ≤ 30	0,50	1,00	4,00	6,00	8,00		
30 < W ≤ 50	0,50	1,00	3,00	4,00	6,00	7,00	
50 < W ≤ 350	0,50	1,00	2,00	3,00	4,00	5,00	*nach Vereinbarung
350 < W ≤ 1250	-	-	2,00	3,00	4,00	5,00	

Maßangaben in mm.

1) Einschließlich Nennbreite 10 mm.

^{*} Die auf dieser Webseite enthaltenen Daten dienen ausschließlich Informationszwecken und stellen in keinem Fall vertragliche Lieferbedingungen dar. Fehler und Unterlassungen ausgenommen.