Haut

Feuillard en Aluminium

Désignation de l'alliage Composition chimique Autres Aluminium
Numérique Symbolique Si Fe Cu Mn Mg Cr Zn Ti Ga V Remarques Chaque (max.) Total (max.) min.
EN AW-1050A EN AW-Al 99,5 0,25 max. 0,40 max. 0,05 max. 0,05 max. 0,05 max. - 0,07 max. 0,05 max. - - - 0,03 - 99,5
EN AW-1070A EN AW-Al 99,7 0,20 max. 0,25 max. 0,03 max. 0,03 max. 0,03 max. - 0,07 max. 0,03 max. - - - 0,03 - 99,7
EN AW-1200 EN AW-Al 99,0 1,00 Si+ Fe   0,05 max. 0,05 max. - - 0,1 max. 0,05 max. - - - 0,05 0,15 99
EN AW-2017A EN AW-Al CuMgSi(A) 0,20 - 0,8 0,70 max. 3,5 - 4,5 0,40 - 1,0 0,40 - 1,0 0,1 max. 0,25 max. - - - 0,25 Zr + Ti 0,05 0,15 Reste
EN AW-2024 EN AW-Al CuMg1 0,50 max. 0,5 max. 3,8 - 4,9 0,30 - 0,9 1,2 - 1,8 0,1 max. 0,25 max. 0,15 max. - - - 0,05 0,15 Reste
EN AW-3003 EN AW-Al Mn1Cu 0,60 max. 0,7 max. 0,05 - 0,20 1,0 - 1,5 - - 0,1 max. - - - - 0,05 0,15 Reste
EN AW-3005 EN AW-Al Mn1Mg0,5 0,60 max. 0,7 max. 0,3 max. 1,0 - 1,5 0,20 - 0,6 0,1 max. 0,25 max. 0,1 max. - - - 0,05 0,15 Reste
EN AW-3105 EN AW-AlMn0,5Mg0,5 0,60 max. 0,7 max. 0,3 max. 0,30 - 0,8 0,20 - 0,8 0,2 max. 0,40 max. 0,1 max. - - - 0,05 0,15 Reste
EN AW-5005 EN AW-AlMg1(B) 0,30 max. 0,7 max. 0,2 max. 0,2 max. 0,50-1,1 0,1 max. - 0,25 max. - - - 0,05 0,15 Reste
EN AW-5052 EN AW-Al Mg2,5 0,25 0,40 max. 0,1 max. 0,1 max. 2,2 - 2,8 0,15 - 0,35 0,1 max. - - - - 0,05 0,15 Reste
EN AW-5083 EN AW-Al Mg4,5Mn0,7  0,40 max. 0,40 max. 0,1 max. 0,40 - 1,0 4,0 - 4,9 0,05 - 0,2 0,25 max. 0,15 max. - - - 0,05 0,15 Reste
EN AW-5086 EN AW-Al Mg4 0,40 max. 0,50 max. 0,1 max. 0,20 - 0,7 3,5 - 4,5 0,05 - 0,2 0,25 max. 0,15 max. - - - 0,05 0,15 Reste
EN AW-5182 EN AW-Al Mg4,5Mn0,4 0,20 max. 0,35 max. 0,15 max. 0,20 - 0,50 4,0 - 5,0 0,1 max. 0,25 max. 0,1 max. - - - 0,05 0,15 Reste
EN AW-5657 EN AW-Al 99,85Mgl(A) 0,08 max. 0,10 max. 0,1 max. 0,03 max. 0,6-1,0 - - 0,05 max. 0,03 0,05 - 0,02 0,05 Reste
EN AW-5754 EN AW-Al Mg3 0,40 max. 0,40 max. 0,1 max. 0,50 max. 2,6 - 3,6 0,30 0,2 max. 0,15 max. - - 0,10 - 0,6 Mn + Cr 0,05 0,15 Reste
EN AW-6016 EN AW-Al Si1,2Mg0,4 1,0 - 1,5 0,50 max. 0,2 max. 0,2 max. 0,25 - 0,6 0,1 max. 0,2 max. 0,15 max. - - - 0,05 0,15 Reste
EN AW-6082 EN AW-Al Si1MgMn 0,7 - 1,3 0,50 max. 0,1 max. 0,40 - 1,0 0,6 - 1,2 0,2 max.5 0,2 max. 0,1 max. - - - 0,05 0,15 Reste
EN AW-7075 EN AW-Al Zn5,5MgCu 0,40 max. 0,50 max. 1,2 - 2,0 0,30 max. 2,1 - 2,9 0,18 - 0,28 5,1 - 6,1 0,2 max. - - - 0,05 0,15 Reste
EN AW-8011A EN AW-Al FeSi(A) 0,40 - 0,8 0,50 - 1,0 0,1 max. 0,1 max. max. 0,1 max. 0,1 max. 0,1 max. 0,05 max. - - - 0,05 0,15 Reste
 
NORME EUROPÉENNE (EN) Équivalences internationales approximatives
Classification
 numérique
Classification symbolique É.-U. (AISI) JAPON (JIS) CHINE (GB)
               
EN AW-1050A EN AW-Al 99,5            
EN AW-1070A EN AW-Al 99,7            
EN AW-1200 EN AW-Al 99,0            
EN AW-2017A EN AW-Al CuMgSi(A)            
EN AW-2024 EN AW-Al CuMg1            
EN AW-3003 EN AW-Al Mn1Cu            
EN AW-3005 EN AW-Al Mn1Mg0,5            
EN AW-3105 EN AW-Al Mn0,5Mg0,5            
EN AW-5005 EN AW-Al Mg1(B)            
EN AW-5052 EN AW-Al Mg2,5            
EN AW-5083 EN AW-Al Mg4,5Mn0,7            
EN AW-5086 EN AW-Al Mg4            
EN AW-5182 EN AW-Al Mg4,5Mn0,4            
EN AW-5657 EN AW-Al 99,85Mgl(A)            
EN AW-5754 EN AW-Al Mg3            
EN AW-6016 EN AW-Al Si1,2Mg0,4            
EN AW-6082 EN AW-Al Si1MgMn            
EN AW-7075 EN AW-Al Zn5,5MgCu            
EN AW-8011A EN AW-Al FeSi(A)            
 
Les caractéristiques mécaniques présentées dans les tableaux suivants recueillent les plages d'épaisseur intermédiaires. Pour des épaisseurs très fines et/ou très importantes, il peut y avoir des différences par rapport aux données présentées.

 

PROPRIÉTÉS MÉCANIQUES FEUILLARD DE ALUMINIUM EN 485-2 

QUALITÉ DE L'ALUMINIUM État de traitement Résistance à la traction Rm Limite élastique Rp02 Allongement minimum % (en fonction d'une épaisseur croissante)
N/mm2  
Désignation Norme Min. Max. Min. Max. A50 mm
EN AW-1050A (Al 99,5) EN 485 0/H111 65 95 20 - 20-29
    H14 105 145 85 - 2-5
    H16 120 160 100 - 1-3
    H18 140 - 120 - 1-2
    H22 85 125 55 - 4-11
    H24 105 145 75 - 3-8
    H26 120 160 90 - 2-4
EN AW-1070 (Al 99,7) EN 485 0/H111 60 90 15 - 23-32
    H18 125 - 105 - 2
    H22 80 120 50 - 7-12
    H24 100 140 60 - 5-9
EN AW-1200 (Al 99,0) EN 485 0/H111 75 105 25 - 19-28
    H14 115 155 95 - 2-6
    H18 150 - 130 - 1-2
    H19 160 - 140 - 1
    H24 115 155 90 - 3-7
AW-2017A (Al Cu4MgSi(A)) EN 485 O - 225 - 145 12-14
    T4 390 - 245 - 14-15
AW-2024 (Al Cu4Mg1) EN 485 O - 220 - 140 12-13
    T4 425 - 275 - 12-14
EN AW-3003 (Al Mn1Cu) EN 485 0/H111 95 135 35 - 15-23
    H14 145 185 125 - 2-4
    H16 170 210 150 - 1-2
    H18 190 - 170 - 1-2
    H24 145 185 115 - 4-6
    H26 170 210 140 - 2-3
EN AW-3005 (Al Mn1Mg0,5) EN 485 H111 115 165 45 - 12-19
    H14 170 215 150 - 1-3
    H22 145 195 110 - 5-7
    H24 220 - 190 - 2-3
EN AW-3105 (Al Mn0,5Mg0,5) EN 485 H111 100 155 40 - 14-17
    H18 195 - 180 - 1
    H24 150 200 120 - 4-5
EN AW-5005 (Al Mg1(B)) EN 485 H111 100 145 35 - 15-22
    H18 185 - 165 - 1-2
    H34 145 185 110 - 3-6
    H36 165 205 135 - 2-4
EN AW-5052 (Al Mg2,5) EN 485 0/H111 170 215 65 - 12-18
    H14 230 280 180 - 3-4
    H18 270 - 240 - 1-2
    H34 230 280 150 - 4-7
EN AW-5083 (Al Mg4,5Mn0,7) EN 485 H111 275 350 125 - 11-15
    H321 305 - 215 - 8-10
    H32 305 380 215 - 5-8
    H34 340 400 250 - 4-7
EN AW-5086 (Al Mg4) EN 485 H111 240 310 100 - 11-17
EN AW-5182 (Al Mg4,5Mn0,4) EN 485 H111 255 315 110 - 11-13
EN AW-5657 (Al 99,85 Mg1(A)) ASTM H241 125 180 - - 13
    H25 140 195 - - 8
    H26 150 205 - - 7
EN AW-5754 (Al Mg3) EN 485 0/H111 190 240 80 - 12-18
    H14 240 280 190 - 3-4
    H18 290 - 250 - 1-2
    H22 220 270 130 - 7-10
    H32 220 270 130 - 7-10
    H34 240 280 160 - 6-8
    H36 265 305 190 - 4-6
EN AW-6016 (Al Si1,2Mg0,4) EN 485 T4 170 250 80 140 24
    T6 260 300 180 260 10
EN AW-6082 (Al Si1MgMn) EN 485 O - 150 - 85 14-18
    T4 205 - 110 - 12-15
    T6 310 - 260 - 6-10
EN AW-7075 (Al Zn5,5MgCu) EN 485 O - 275 - 145 10
    T6 545 - 475 - 6-8
    T76 500 - 425 - 7-8
    T73 460 - 385 - 7-8
EN AW-8011A (Al FeSi(A) EN 485 O/H111 85 130 30 - 19-25
    H18 165 - 145 - 1-2
    H24 125 165 100 - 3-6

 

 

EXPLICATION SUR LES DÉSIGNATIONS DES ÉTATS DE TRAITEMENT UTILISÉS DANS LES TABLEAUX EN 485-2

Désignation de l'état de traitement Explication
O Recuit - les produits qui, après façonnage à chaud, présentent les propriétés requises pour l'état de recuit, peuvent être désignés par O.
H14 Écrouissage - Dureté 1/2
H16 Écrouissage - Dureté 3/4
H18 Écrouissage - Dureté 4/4
H19 Écrouissage - Dureté extra
H111 Recuit et léger écrouissage (inférieur à H11) au cours des opérations finales telles que l'étirage ou l'aplatissage
H22 / H32 Écrouissage - Dureté 1/4
H24 / H34 Écrouissage - Dureté 1/2
H26 / H36 Écrouissage - Dureté 3/4
H321 Écrouissage et stabilisation - La dureté 1/4 s'applique aux alliages d'aluminium-magnésium pour lesquels sont spécifiées une résistance à la corrosion par exfoliation et la corrosion intragranulaire.
T4 Solution et maturation naturelle
T6 Solution et maturation artificielle
T73 Solution et surmaturation artificielle, de façon à obtenir la meilleure résistance à la corrosion sous tension
T76 Solution et surmaturation artificielle, de façon à obtenir une bonne résistance à la corrosion par exfoliation

 

 
ÉQUIVALENCES DANS LES DIFFÉRENTS ÉTATS
H2 ~ H12 ~ H22 ~ H32
H4 ~ H14 ~ H24 ~ H34
H8 ~ H18 ~ H28 ~ H38
  • Sur accord commercial
  • Peut être fourni en aluminium anodisable et anodisé
  • Nous proposons également les options suivantes pour le nettoyage de matériaux (en fonction de l'alliage) : 
    • Lavage
    • Dégraissage chimique
 

TOLÉRANCES EN ÉPAISSEUR

Épaisseur nominale Tolérances en épaisseur pour largeurs nominales conformément à EN 485-4, de
≤ 1000 1000 < ET ≤ 1250
> Alloy Group Alloy Group
I II I II
0,2 0,4 ± 0,02 ± 0,03 ± 0,04 ± 0,05
0,4 0,5 ± 0,03 ± 0,03 ± 0,04 ± 0,05
0,5 0,6 ± 0,03 ± 0,04 ± 0,05 ± 0,06
0,6 0,8 ± 0,03 ± 0,04 ± 0,06 ± 0,07
0,8 1 ± 0,04 ± 0,05 ± 0,06 ± 0,08
1 1,2 ± 0,04 ± 0,05 ± 0,07 ± 0,09
1,2 1,5 ± 0,05 ± 0,07 ± 0,09 ± 0,11
1,5 1,8 ± 0,06 ± 0,08 ± 0,10 ± 0,12
1,8 2 ± 0,06 ± 0,09 ± 0,11 ± 0,13
2 2,5 ± 0,07 ± 0,10 ± 0,12 ± 0,14
2,5 3 ± 0,08 ± 0,11 ± 0,13 ± 0,15
3 3,5 ± 0,10 ± 0,12 ± 0,15 ± 0,17
3,5 4 ± 0,15 - ± 0,20 -
4 5 ± 0,18 - ± 0,22 -

Dimensions en mm.

 

TOLÉRANCES EN LARGEUR

Épaisseur nominale t tolerancias de corte estándar VINCO1) Tolérances en largeur pour largeurs nominales conformément à la norme EN 485-4, de :
> 3-15 15-50 50-150 >150 ≤ 100 100 < ET ≤  300 300< ET ≤ 500 500 < ET ≤ 1250
- 0,2 0;+0,15 0;+0,15 0;+0,15 0;+0,2 - - - -
0,2 0,4 0;+0,15 0;+0,15 0;+0,15 0;+0,2 0;+0,3 0;+0,4 0;+0,6 0;+1,5
0,4 0,6 0;+0,17 0;+0,18 0;+0,2 0;+0,24 0;+0,3 0;+0,4 0;+0,6 0;+1,5
0,6 1 0;+0,17 0;+0,18 0;+0,2 0;+0,24 0;+0,3 0;+0,5 0;+1 0;+1,5
1 1,5 0;+0,2 0;+0,2 0;+0,2 0;+0,3 0;+0,4 0;+0,7 0;+1,2 0;+2
1,5 2 sous consultation 0;+0,26 0;+0,3 0;+0,32 0;+0,4 0;+1 0;+1,2 0;+2
2 2,5 sous consultation 0;+0,26 0;+0,3 0;+0,32 0;+1 0;+1 0;+1,5 0;+2
2,5 3 sous consultation sous consultation 0;+0,32 0;+0,35 0;+1 0;+1 0;+1,5 0;+2
3 5 sous consultation sous consultation 0;+0,32 0;+0,35 - 0;+1,5 0;+2 0;+3

 

Dimensions en mm.
1)Des tolérances dimensionnelles plus ajustées sont envisageables sur accord commercial.

 

 

TOLÉRANCES DE FLÈCHE

Largeur nominale (W) Des tolérances plus ajustées sont envisageables pour le cintrage des rives sur accord commercial . Tolérances conformément à la norme EN 485-4, de : pour le cintrage des rives
Écart maximal
2000 mm
Épaisseur (t)
Écart maximal
2000 mm
Épaisseur (t)
t ≤ 1,20 mm t > 1,20 mm Tolérance en cintrage dmax
3 ≤ W < 6 10,00 15,00 -
6 < W ≤ 10 8,00 12,00 -
10 < W ≤ 20 4,00 6,00 -
20 < W < 25 2,00 4,00 -
25 ≤ W ≤ 100 2,00 4,00 8 1)
100 2,00 4,00 6,00
300 < W ≤ 350 2,00 4,00 5,00
350 < W ≤ 600 - - 5,00
600 < W ≤ 1000 - - 4,00

Dimensions en mm.
1) Pour des largeurs nominales inférieures à 25 mm, les tolérances seront convenues au moment de la demande ou de la commande.

 

ONDULATION / PLANÉITÉ LONGITUDINALE

Sur 1 000 mm, la tolérance de planéité des feuillards sur des lames placées dans le sens du laminage ne doit pas dépasser 10 mm. Toute autre exigence concernant la planéité doit faire l'objet d'un accord au moment de la commande.
 
Espesor nominal t tolerancias de corte estándar VINCO1) Tolerancias en anchura para anchulas nominales según Norma EN 485-4 de:
> 3-15 15-50 50-150 >150 ≤ 100 100 < Y ≤  300 300< Y ≤ 500 500 < Y ≤ 1250
- 0,2 0;+0,15 0;+0,15 0;+0,15 0;+0,2 - - - -
0,2 0,4 0;+0,15 0;+0,15 0;+0,15 0;+0,2 0;+0,3 0;+0,4 0;+0,6 0;+1,5
0,4 0,6 0;+0,17 0;+0,18 0;+0,2 0;+0,24 0;+0,3 0;+0,4 0;+0,6 0;+1,5
0,6 1 0;+0,17 0;+0,18 0;+0,2 0;+0,24 0;+0,3 0;+0,5 0;+1 0;+1,5
1 1,5 0;+0,2 0;+0,2 0;+0,2 0;+0,3 0;+0,4 0;+0,7 0;+1,2 0;+2
1,5 2 bajo consulta 0;+0,26 0;+0,3 0;+0,32 0;+0,4 0;+1 0;+1,2 0;+2
2 2,5 bajo consulta 0;+0,26 0;+0,3 0;+0,32 0;+1 0;+1 0;+1,5 0;+2
2,5 3 bajo consulta bajo consulta 0;+0,32 0;+0,35 0;+1 0;+1 0;+1,5 0;+2
3 5 bajo consulta bajo consulta 0;+0,32 0;+0,35 - 0;+1,5 0;+2 0;+3
 

DESIGNATION OF THE BASIC STATES OF THE PROCESS

F: As fabricated

Applied to the semi-product fabrication process in which there are no special controls associated with the heat treatments or cold working processes carried out. No values have been established for the mechanical properties.

O: Annealed

Applied to semi-products with the purpose of achieving the state with the lowest strength.

H: Work hardened (Generally drawn/rolled).

Applied to semi-products with a strength that has increased after being cold worked, with or without an intermediate heat treatment to achieve a reduction in their mechanical properties.

W: Solution heat treated and cold worked

This state is only applied to alloys that spontaneously age at the ambient temperature after being heat treated and cold worked. This state is only used when the natural ageing time is indicated. For example, W 1/2 hour.

T: Heat treated to achieve structural hardening

Applied to semi-products that are heat treated to increase their mechanical strength, with or without additional work hardening, with the purpose of achieving a stable state.

 

SUBDIVISIONS OF THE BASIC ALUMINIUM TREATMENT STATES

1. SUBDIVISION OF STATE H: WORK HARDENED

1.1. The first digit after the letter H indicates the specific variation of the basic operations of the process according to the following:

H1: Work hardened only

The mechanical properties are achieved with final cold working.

H2: Work hardened and partially annealed

The mechanical properties are achieved with a final heat treatment. In general, this state has a larger elongation than H1 with the same strength.

H3: Work hardened and stabilised

Applied to semi-products hardened with cold plastic working, with mechanical properties that have been subsequently stabilised by a low-temperature heat treatment. In general, stabilisation reduces mechanical strength and increases ductility. This subdivision is only applicable to alloys that are softened at the ambient temperature if not stabilised, such as AlMg alloys.

1.2 The digit after H1, H2 and H3 refers to the mechanical properties of the semi-product:

HX2: 1/4 hard. Its tensile strength is approximately halfway between the annealed and semi-hard state.

HX4: Semi-hard. Its tensile strength is approximately halfway between the annealed and hard state.

HX6: 3/4 hard. Its tensile strength is approximately halfway between the semi-hard and hard state.

HX8: Hard. Maximum degree of work hardening generally used.

HX9: Extra hard. Its tensile strength exceeds that of the hard state. Odd digits indicate states in which the tensile strength is the mean corresponding to the states of adjacent even digits.

1.3 Third digit (x) in the subdivision of state H

The next three digits after the letter H are used to designate forgeable alloys:

H (x)11: : Applied to semi-products that maintain their cold working hardness after final annealing, which prevents them from being classified as annealed (0), but which can be classified as H(x)1. Example: The degree of hardness achieved by controlled stress straightening is described as H111 (elongation of approximately 1%).

H 112: Applied to semi-products that can be work hardened at high temperatures, for which a series of mechanical property limits have been established.

H 113: : Applied to sheets that maintain their cold working hardness after final annealing, which prevents them from being classified as annealed (0), but which can be classified as H(x) (elongation of approximately 3%).

 

2. SUBDIVISION OF T STATES: HEAT TREATMENT

Digits 1 to 10 after the letter T indicate the specific sequences of basic treatments, as described next.

T1: Cooled from an elevated temperature-shaping process and naturally aged

Applied to semi-products that are cooled down from the extrusion temperature at the adequate speed (cold working), with the purpose of increasing their mechanical properties with a subsequent natural ageing process. This state includes the products that are subject to flattening or straightening with stress after cooling down, with no significant effects on the product's mechanical properties.

T3: Solution heat treated (1), cold worked (1), work hardened and naturally aged

Applied to semi-products that are cold worked and then work hardened after a solution heat treatment or cold working, with the purpose of improving their mechanical strength. This state includes the products that are subject to flattening or straightening with stress after cold working, which have an impact on the product's mechanical properties.

T4: Solution heat treated (1), cold worked (1) and naturally aged

Applied to semi-products that improve their mechanical properties after being solution heat treated, cold worked and naturally aged. This state includes the products that are subject to flattening or straightening with stress, with no effect on the product's mechanical properties.

T5: Cooled from an elevated temperature-shaping process and artificially aged

Applied to semi-products that are cooled down with forced air at the adequate speed (cold working) from the extrusion temperature, with the purpose of increasing their mechanical properties with a subsequent artificial ageing process. This state includes the products that are subject to flattening or straightening with stress after cooling down, with no significant effects on the product's mechanical properties.

T6: Solution heat treated (1), cold worked (1) and artificially aged

Applied to semi-products that improve their mechanical properties after a sudden solution heat treatment and artificial ageing. This state includes the products that are subject to flattening or straightening with stress, with no effect on the product's mechanical properties.

T7: Solution heat treated (1), cold worked (1) and artificially overaged / stabilised

Applied to semi-products that are artificially aged after being solution heat treated and cold worked, exceeding the limit corresponding to the maximum strength, with the purpose of controlling some of the product's significant properties.

T8: Solution heat treated (1), cold worked (1), work hardened and artificially aged

Applied to semi-products that are work hardened to a certain level between being cold worked and artificially aged to improve their strength. This state includes the products that are subject to flattening or straightening with stress after cold working, which have an impact on the product's mechanical properties.

T9: Solution heat treated (1), cold worked (1), artificially aged and work hardened

Applied to semi-products that are cold worked after being solution heat treated, cord worked and artificial aged, with the purpose of improving their mechanical strength.

T10: Cooled from an elevated temperature-shaping process, work hardened and artificially aged

Applied to semi-products that are subject to a specific work hardening process after cooling down (cold working) and before they are artificially aged.

2.1 Second digit in the subdivision of state T

A second digit is added (it must not be 0) to indicate variations in the treatment that significantly alter the properties of semi-products. The most significant variations are:

T31: 1% Solution heat treated, cold worked and work hardened.

T31: 1% Solution heat treated, cold worked and work hardened.

T41: Solution heat treated and cold worked, cooled down at a specific temperature.

T35: 1.5 to 3% Solution heat treated, cold worked and controlled stress applied.

T36: 7% Solution heat treated, cold worked and work hardened.

T42: Solution heat treated from 0 or F, cold worked and natural ageing.

T62: Solution treated from 0 or F, cold worked and natural ageing.

T51, T52, T53, T54: Cooling down (cold worked) from the extrusion temperature with different cooling levels, achieving different final mechanical properties with the same type of artificial ageing.

T53: Cooling (cold worked), from the extrusion and double artificial ageing temperature.

T61: Solution heat treated, cold worked and artificially aged under conditions other than T6.

T72: Stabilisation treated after T42.

T73: Solution heat treated, cold worked and aged with double treatment (stabilised to improve the resistance to corrosion under stress and ageing conditions).

T74: Solution heat treated, cold worked in water at a temperature above 50ºC and ageing with double treatment (Stabilisation + Ageing).

T76: Solution heat treated, cold worked and aged with double treatment (stabilised to improve the resistance to exfoliation corrosion + Ageing).

T81: Solution heat treated, cold worked, work hardened with forming and artificially aged. 1.5 to 3% Stress hardened.

T83: Similar to T8 for the Simagaltok 63/EN AW 6063 alloy.

T86: Solution heat treated, cold worked, work hardened and artificially aged. The degree of work hardening is usually the result of 6% stress straightening.

T87: Solution heat treated, cold worked, work hardened with forming and artificially aged. The degree of work hardening is usually the result of 7% stress straightening.

T89: Solution heat treated, cold worked and work hardened to achieve the mechanical properties and artificial ageing.

T93, T94: Solution heat treated, cold worked and work hardened to achieve the mechanical properties.

2.2 Third digit (x) in the subdivision of state T

The third digit indicates the elimination of stresses by means of straightening with controlled stress, where:

T(x)51: Applied to semi-products, indicating the work hardening effects after final straightening with controlled stress (1 to 3%) after solution heat treatment and cold working. These bars will not be subject to subsequent straightening processes.

T(x)50: As in the previous state, but applied to extruded and drawn bars, sections and pipes: Work hardening percentage, straightened with controlled stress (3%), except for pipes (0.5 to 3%).

T(x)511: As in the previous state, but allowing a lower degree of drawing after controlled stress.

* Les données contenues dans ce site Web sont fournies à titre indicatif et ne constituent en aucune manière des conditions contractuelles de fourniture. Sauf erreur ou omission.
Recherche de produitFeuillard, fil et treillis.